Self-organizing maps as an approach to exploring spatiotemporal diffusion patterns
نویسندگان
چکیده
BACKGROUND Self-organizing maps (SOMs) have now been applied for a number of years to identify patterns in large datasets; yet, their application in the spatiotemporal domain has been lagging. Here, we demonstrate how spatialtemporal disease diffusion patterns can be analysed using SOMs and Sammon's projection. METHODS SOMs were applied to identify synchrony between spatial locations, to group epidemic waves based on similarity of diffusion pattern and to construct sequence of maps of synoptic states. The Sammon's projection was used to created diffusion trajectories from the SOM output. These methods were demonstrated with a dataset that reports Measles outbreaks that took place in Iceland in the period 1946-1970. The dataset reports the number of Measles cases per month in 50 medical districts. RESULTS Both stable and incidental synchronisation between medical districts were identified as well as two distinct groups of epidemic waves, a uniformly structured fast developing group and a multiform slow developing group. Diffusion trajectories for the fast developing group indicate a typical diffusion pattern from Reykjavik to the northern and eastern parts of the island. For the other group, diffusion trajectories are heterogeneous, deviating from the Reykjavik pattern. CONCLUSIONS This study demonstrates the applicability of SOMs (combined with Sammon's Projection and GIS) in spatiotemporal diffusion analyses. It shows how to visualise diffusion patterns to identify (dis)similarity between individual waves and between individual waves and an overall time-series performing integrated analysis of synchrony and diffusion trajectories.
منابع مشابه
Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملBiomimetic sensory abstraction using hierarchical quilted self-organizing maps
We present an approach for abstracting invariant classifications of spatiotemporal patterns presented in a highdimensionality input stream, and apply an early proof-of-concept to shift and scale invariant shape recognition. A model called Hierarchical Quilted Self-Organizing Map (HQSOM) is developed, using recurrent self-organizing maps (RSOM) arranged in a pyramidal hierarchy, attempting to mi...
متن کاملGeo-Temporal Visual Analysis of Customer Feedback Data Based on Self-Organizing Sentiment Maps
The success of a company is often dependent on the quality of their Customer Relationship Management (CRM). Knowledge about customer’s concerns and needs can be a huge advantage over competitors but is hard to gain. Large amounts of textual feedback from customers via surveys or emails has to be manually processed, condensed, and lead to decision makers. As this process is quite expensive and e...
متن کاملSpace-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns
Spatiotemporal data pose serious challenges to analysts in geographic and other domains. Owing to the complexity of the geospatial and temporal components, this kind of data cannot be analyzed by fully automatic methods but require the involvement of the human analyst’s expertise. For a comprehensive analysis, the data need to be considered from two complementary perspectives: (1) as spatial di...
متن کاملThe pattern determination of sea surface temperature distribution and chlorophyll a in the Southern Caspian Sea using SOM Model
Remote sensing has changed modern oceanography by proving synoptic periodic data which can be processed. Since the satellite data are usually too much and nonlinear, in most cases, it is difficult to distinguish the patterns from these images. In fact, SOM (Self-Organizing Maps) model is a type of ANN (Artificial Neural Network) that has the ability to distinguish the efficient patterns from th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2013